Section 4.14.1.0 - Basic Writeup - Wikipedia - Generative Model
Section 4.14.1.1 - Hidden Markov model as a HMM Sequence Classifier
Section 4.14.1.2 - Probabilistic context-free grammar as a Classifier
Section 4.14.1.3 - Averaged one-dependence estimators (AODE)
Section 4.14.1.4 - Labelled Latent Dirichlet allocation
Section 4.14.1.5 - Multi-Grain LDA
Section 4.14.1.6 - Restricted Boltzmann machine for Classification
Section 4.14.1.7 - Linear classifiers
Section 4.14.1.7.0 - Basic Writeup - Wikipedia - Linear Classifier
Section 4.14.1.7.1 - Fisher's linear discriminant (Linear Discriminant Analysis - LDA)
Section 4.14.1.7.2 - Naive Bayes Classifer
Section 4.14.1.7.2.0 - Basic Writeups
Section 4.14.1.7.2.0.1 - Part 1 - Wikipedia - Naive Bayes Classifier
Section 4.14.1.7.2.0.2 - Part 2 - Stackexchange - Difference Between Naive Bayes and Multinomial Naive Bayes
Section 4.14.1.7.2.1 - Gaussian naive Bayes
Section 4.14.1.7.2.2 - Multinomial naive Bayes
Section 4.14.1.7.2.3 - Bernoulli naive Bayes
Section 4.14.1.8 - Mixture Models
Section 4.14.1.8.0 - Basic Writeup - Wikipedia - Mixture Model
Section 4.14.1.8.1 - Categorical mixture model
Section 4.14.2.0 - Basic Writeup - Wikipedia - Discriminative Model
Section 4.14.2.1 - Linear classifiers
Section 4.14.2.1.0 - Basic Writeup - Wikipedia - Linear Classifier
Section 4.14.2.1.1 - Logistic regression
Section 4.14.2.1.2 - Perceptron
Section 4.14.2.1.3 - Support vector machines (See Section 4.13 on SVMs)
Section 4.14.2.1.3.0 - Basic Writeup - Wikipedia - Support Vector Machine
Section 4.14.2.1.3.1 - Linear SVM
Section 4.14.2.1.3.2 - Least squares support vector machines
Section 4.14.2.2 - Quadratic classifiers
Section 4.14.2.3 - Kernel estimation
Section 4.14.2.3.0 - Basic Writeup - Wikipedia - Variable Kernel Density Estimation: Use for Statistical Classification
Section 4.14.2.3.1 - k-nearest neighbor
Section 4.14.2.4 - Boosting Ensemble (meta-algorithm - See Sction 10.5)
Section 4.14.2.5 - Conditional Random Fields (See Section 4.3.4.1)
Section 4.14.2.6 - Decision trees (See Section 4.7)
Section 4.14.2.7 - Random forests (Ensemble - See Section 4.7.8)
Section 4.14.2.8 - Neural networks (See Section 4.2 on ANN's)
Section 4.14.2.9 - Learning vector quantization (See Section 4.2.1.10.1 in Feed Forward Networks)