Section 4.3.0 - Basic Writeup - Wikipedia - Bayesian Networks
Section 4.3.1 - Bayes Theorem
Section 4.3.2 - Chain Rule
Section 4.3.3 - Naive Bayes
Section 4.3.3.0 - Basic Writeup - Wikipedia - Naive Bayes Classifier
Section 4.3.3.1 - Gaussian Naive Bayes
Section 4.3.3.2 - Multinomial Naive Bayes
Section 4.3.3.3 - Bernoulli naive Bayes
Section 4.3.4 - Markov random field
Section 4.3.4.0 - Introductory Writeups
Section 4.3.4.0.1 - Basic Writeup - Wikipedia - Markov Random Field
Section 4.3.4.0.2 - Detailed Writeup - Blake,Kohli - Introduction to Markov Random Fields
Section 4.3.4.1 - Conditional Random Field
Section 4.3.4.1.0 - Introductory Writeups
Section 4.3.4.1.0.1 - Basic Writeup - Wikipedia - Conditional Random Field
Section 4.3.4.1.0.2 - Detailed Writeup - Sutton,McCallum - An Introduction to Conditional Random Fields
Section 4.3.4.1.1 - High Order CRF
Section 4.3.4.1.2 - Variable Order CRF
Section 4.3.4.1.3 - Semi Markov CRF
Section 4.3.4.1.4 - Latent-dynamic CRF
Section 4.3.5 - Markov Models
Section 4.3.5.0 - Basic Writeup - Wikipedia - Markov Model
Section 4.3.5.1 - Hidden Markov Model
Section 4.3.5.1.0 - Introductory Writeups
Section 4.3.5.1.0.1 - Basic Writeup - Hidden Markov Model
Section 4.3.5.1.0.2 - Detailed Writeup - Fine,Singer,Tishby - The Hierarchical Hidden Markov Model: Analysis and Applications
Section 4.3.5.1.1 - Layered Hidden Markov Model
Section 4.3.5.1.2 - Parameterized-HMM (PHMM)
Section 4.3.5.1.3 - Entropic-HMM
Section 4.3.5.1.4 - Variable-length HMM (VHMM)
Section 4.3.5.1.5 - Coupled-HMM (CHMM)
Section 4.3.6 - Bayesian knowledge base